Abstract
Pediococcus damnosus (P. damnosus) bacteriophage (phage) clP1 is a novel virulent phage isolated from a municipal sewage sample collected in Southern Ireland. This phage infects the beer spoilage strain P. damnosus P82 which was isolated from German breweries. Sequencing of the phage has revealed a linear double stranded DNA genome of 38,013 base pairs (bp) with an overall GC content of 47.6%. Fifty seven open reading frames (ORFs) were identified of which 30 showed homology to previously sequenced proteins, and as a consequence 20 of these were assigned predicted functions. The majority of genes displayed homology with genes from the Lactobacillus plantarum phage phiJL-1. All genes were located on the same coding strand and in the same orientation. Morphological characterisation placed phage clP1 as a member of the Siphoviridae family with an isometric head (59nm diameter) and non-contractile tail (length 175nm; diameter 10nm. Interestingly, the phage clP1 genome was found to share very limited identity with other phage genome sequences in the database, and was hence considered unique. This was highlighted by the genome organisation which differed slightly to the consensus pattern of genomic organisation usually found in Siphoviridae phages. With the genetic machinery present for a lytic lifecycle and the absence of potential endotoxin factors, this phage may have applications in the biocontrol of beer spoilage bacteria. To our knowledge, this study represents the first reported P. damnosus phage genome sequence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.