Abstract

Bradyrhizobium sp. strain WSM1417 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen (N2) fixing root nodule of Lupinus sp. collected in Papudo, Chile, in 1995. However, this microsymbiont is a poorly effective N2 fixer with the legume host Lupinus angustifolius L.; a lupin species of considerable economic importance in both Chile and Australia. The symbiosis formed with L. angustifolius produces less than half of the dry matter achieved by the symbioses with commercial inoculant strains such as Bradyrhizobium sp. strain WSM471. Therefore, WSM1417 is an important candidate strain with which to investigate the genetics of effective N2 fixation in the lupin-bradyrhizobia symbioses. Here we describe the features of Bradyrhizobium sp. strain WSM1417, together with genome sequence information and annotation. The 8,048,963 bp high-quality-draft genome is arranged in a single scaffold of 2 contigs, contains 7,695 protein-coding genes and 77 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program.

Highlights

  • The Fabaceae plant family is the third largest family of flowering plants with a unique ecological role in nitrogen (N2) fixation

  • The symbiosis formed with L. angustif olius produces less than half of the dry matter achieved by the symbioses with commercial inoculant strains such as Bradyrhiz ob ium sp. strain WSM471

  • We describe the features of Bradyrhizob ium sp. strain WSM1417, tog ether with genome sequence information and annotation

Read more

Summary

Introduction

The Fabaceae plant family is the third largest family of flowering plants with a unique ecological role in nitrogen (N2) fixation. The legume genus Lupinus (commonly known as lupin) consists of around 280 species classified within the Genisteae tribe of the subfamily Faboideae with major centers of diversity in South and Western North America, the Andes, the Mediterranean regions, and Africa. This legume has been grown in rotations with cereals for at least 2000 years [1] and is widely distributed within the old and new worlds [2]. Strains of lupin-nodulating Bradyrhizobium are able to nodulate the herbaceous Mediterranean legume Ornithopus (seradella) spp.

The Genomic Standards Consortium
Classification and general features
Genome sequencing and annotation information
Not recorded
Project relevance
Genome properties
CRISPR repeats
Acknowledg ements
Findings
Minerva Access is the Institutional Repository of The University of Melbourne
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.