Abstract

Genus Streptomyces has been a source of various clinically significant bioactive metabolites. Taxonomically, Streptomyces formicae KY5 is a new and different species. The complete genome sequences of S. formicae KY5 is available in the public DNA sequence databases for different analysis. The accessibility of the genomic sequence presents an excellent opportunity to explore the secondary metabolites potential of this distinct Streptomyces species. In this study, we employed the advance bioinformatics resources to annotate the total genome sequence of S. formicae KY5. Bioinformatics tools are applied to locate all the secondary metabolites hiding beneath their biosynthetic gene clusters (BGCs). The S. formicae KY5 is found to synthesis distinct and various secondary metabolites by undergoing the designated genomic encoding. Predictive analysis conveys that this strain has 34 gene clusters to encode potential secondary metabolites. For structural similarity with other drugs, we scanned the drug bank database, drug target and drug with the highest similarity was retrieved from PDB for molecular docking. Molecular docking analysis was carried out through molecular operating tool to evaluate drug-like potential of the chemical compounds. Three drugs like compounds were predicted from S.

Highlights

  • In the survival of microbial culture, natural products produced by these microbes play a significant role

  • To understand the orientation and binding of secondary metabolites with respective drug target, we look upon the MOE tool to calculate the molecular docking Scores, binding energies, and binding affinities

  • Genome data scanning of S. formicae reveals different secondary metabolites encoded by biosynthetic gene clusters (BGCs)

Read more

Summary

Introduction

In the survival of microbial culture, natural products produced by these microbes play a significant role. Microbial natural products or secondary metabolites can be used as a pharmaceutical, nutritional and agricultural agents These microbial natural products comprise of saccharides, terpenoids, non-ribosomal peptides (NRPs), polyketides (PKs), peptides which are post-transnationally modified (RiPPs), some hybrid natural products, and ribosomally synthesized compounds. These natural products are synthesized by biosynthetic gene clusters (BGC), only found in bacteria, fungi and plants. Streptomycetes, a gram-positive saprophyte is famous for their inherent talent to yield pharmaceutically relevant secondary metabolites They produce more than half of all known antibiotics [6] and possess the potential to produce a considerable of 105 secondary metabolites according to an arithmetical study [7]. They are well known for producing various clinically important bioactive metabolites which include the antibiotics tetracycline and streptomycin, the anthelmintic avermectin, the antifungal amphotericin B, the antitumor mitomycin C, the Received: October 14, 2019, Accepted: December 02, 2019, Published: December 09, 2019

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call