Abstract

AbstractStereoselective carboligating enzymes were discovered by a genome mining approach to extend the biocatalysis toolbox. Seven hundred enzymes were selected by sequence comparison from diverse prokaryotic species as representatives of the aldolase (FSA) family diversity. The aldol reaction tested involved dihydroxyacetone (DHA) and glyceraldehyde‐3‐phosphate. The hexose‐6‐phosphate formation was monitored by mass spectrometry. Eighteen enzymes annotated either as transaldolases or aldolases were found to exhibit a DHA aldolase activity. Remarkably, six of them proven as aldolases, and not transaldolases, shared very limited similarities with those currently described. Multiple sequence alignment performed on all enzymes revealed a Tyr in the new DHA aldolases as found in FSAcoli instead of a Phe usually found in transaldolases. Four of these DHA aldolases were biochemically characterised in comparison with FSAcoli. In particular, an aldolase from Listeria monocytogenes exhibited interesting catalytic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.