Abstract

BackgroundBovine tuberculosis (bTB) is a disease with major implications for animal welfare and productivity, as well as having the potential for zoonotic transmission. In Great Britain (GB) alone, controlling bTB costs in the region of £100 million annually, with the current control scheme seemingly unable to stop the inexorable spread of infection. One aspect that may be driving the epidemic is evolution of the causative pathogen, Mycobacterium bovis. To understand the underlying genetic changes that may be responsible for this evolution, we performed a comprehensive genome-level analyses of 4 M. bovis strains that encompass the main molecular types of the pathogen circulating in GB.ResultsWe have used a combination of genome sequencing, transcriptome analyses, and recombinant DNA technology to define genetic differences across the major M. bovis lineages circulating in GB that may give rise to phenotypic differences of practical importance. The genomes of three M. bovis field isolates were sequenced using Illumina sequencing technology and strain specific differences in gene expression were measured during in vitro growth and in ex vivo bovine alveolar macrophages using a whole genome amplicon microarray and a whole genome tiled oligonucleotide microarray. SNP/small base pair insertion and deletions and gene expression data were overlaid onto the genomic sequence of the fully sequenced strain of M. bovis 2122/97 to link observed strain specific genomic differences with differences in RNA expression.ConclusionsWe show that while these strains show extensive similarities in their genetic make-up and gene expression profiles, they exhibit distinct expression of a subset of genes. We provide genomic, transcriptomic and functional data to show that synonymous point mutations (sSNPs) on the coding strand can lead to the expression of antisense transcripts on the opposing strand, a finding with implications for how we define a 'silent’ nucleotide change. Furthermore, we show that transcriptomic data based solely on amplicon arrays can generate spurious results in terms of gene expression profiles due to hybridisation of antisense transcripts. Overall our data suggest that subtle genetic differences, such as sSNPS, may have important consequences for gene expression and subsequent phenotype.

Highlights

  • Bovine tuberculosis is a disease with major implications for animal welfare and productivity, as well as having the potential for zoonotic transmission

  • In an attempt to better define genetic differences across the major M. bovis lineages circulating in Great Britain (GB) that may give rise to phenotypic differences of practical importance, we have used a combination of genome sequencing, transcriptome analyses, and recombinant DNA technology

  • Our results suggest that data generated from amplicon arrays in the past may need to be revisited, as it is possible that some codingsequences identified as being differentially expressed were instead antisense transcripts

Read more

Summary

Introduction

Bovine tuberculosis (bTB) is a disease with major implications for animal welfare and productivity, as well as having the potential for zoonotic transmission. Mycobacterium bovis is the causative agent of bovine tuberculosis (bTB), an endemic disease of cattle in Great Britain (GB) with the potential for zoonotic transmission to humans. In GB the primary control of bTB is through ‘test and slaughter’ surveillance, whereby cattle that are positive to the tuberculin skin test [1] are removed from the herd and slaughtered In spite of this approach, which has been in place since the 1950s, the number of TB-positive cattle slaughtered is increasing year on year - approximately 30,000 cattle were tested and slaughtered between 2012–2013, compared to 300 between 1995–1996 (http://www.defra.gov.uk/animal-diseases/a-z/ bovine-tb/). M. bovis isolates that are cultured from skin test-reactor animals are currently genetically typed using a combination of spoligotyping [2] and VNTR [3]. Types 25, 35, 9 and 17 encompass the diversity of the major clonal lineages of M. bovis circulating in the UK

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.