Abstract

Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is used to seed reactors in wastewater treatment plants around the world; however, the role of most of its microbial community in ammonium removal remains unknown. Our analysis yielded 23 near-complete draft genomes that together represent the majority of the microbial community. We assign these genomes to distinct anaerobic and aerobic microbial communities. In the aerobic community, nitrifying organisms and heterotrophs predominate. In the anaerobic community, widespread potential for partial denitrification suggests a nitrite loop increases treatment efficiency. Of our genomes, 19 have no previously cultivated or sequenced close relatives and six belong to bacterial phyla without any cultivated members, including the most complete Omnitrophica (formerly OP3) genome to date.

Highlights

  • Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal

  • Previous studies of the PNA microbial community reported on the organisms responsible for the key processes in PNA systems: ammonium-oxidizing bacteria (AOB) and anammox bacteria

  • Fluorescence in situ hybridization and clone libraries revealed the presence of nitrite-oxidizing bacteria (NOB) in PNA systems and various studies showed that uncultured members of the phyla Bacteroides, Chlorobi and Chloroflexi are omnipresent in anammox bioreactors[13,15,16,17]

Read more

Summary

Introduction

Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. To gain comprehensive insight in the function of the total community in a full-scale PNA reactor, we used a shotgun metagenomics approach followed by a genome-centred metagenome analysis pipeline to retrieve near-complete genome sequences from members of the microbial community. Based on these genome sequences, we present an ecological model of the PNA wastewater treatment system

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.