Abstract

BackgroundSeveral archaeal species from the order Sulfolobales are interesting from the biotechnological point of view due to their biomining capacities. Within this group, the genus Acidianus contains four biomining species (from ten known Acidianus species), but none of these have their genome sequenced. To get insights into the genetic potential and metabolic pathways involved in the biomining activity of this group, we sequenced the genome of Acidianus copahuensis ALE1 strain, a novel thermoacidophilic crenarchaeon (optimum growth: 75 °C, pH 3) isolated from the volcanic geothermal area of Copahue at Neuquén province in Argentina. Previous experimental characterization of A. copahuensis revealed a high biomining potential, exhibited as high oxidation activity of sulfur and sulfur compounds, ferrous iron and sulfide minerals (e.g.: pyrite). This strain is also autotrophic and tolerant to heavy metals, thus, it can grow under adverse conditions for most forms of life with a low nutrient demand, conditions that are commonly found in mining environments.ResultsIn this work we analyzed the genome of Acidianus copahuensis and describe the genetic pathways involved in biomining processes. We identified the enzymes that are most likely involved in growth on sulfur and ferrous iron oxidation as well as those involved in autotrophic carbon fixation. We also found that A. copahuensis genome gathers different features that are only present in particular lineages or species from the order Sulfolobales, some of which are involved in biomining. We found that although most of its genes (81%) were found in at least one other Sulfolobales species, it is not specifically closer to any particular species (60–70% of proteins shared with each of them). Although almost one fifth of A. copahuensis proteins are not found in any other Sulfolobales species, most of them corresponded to hypothetical proteins from uncharacterized metabolisms.ConclusionIn this work we identified the genes responsible for the biomining metabolisms that we have previously observed experimentally. We provide a landscape of the metabolic potentials of this strain in the context of Sulfolobales and propose various pathways and cellular processes not yet fully understood that can use A. copahuensis as an experimental model to further understand the fascinating biology of thermoacidophilic biomining archaea.

Highlights

  • Several archaeal species from the order Sulfolobales are interesting from the biotechnological point of view due to their biomining capacities

  • Acidianus copahuensis within the order Sulfolobales A total of 2559 genes were predicted in Acidianus copahuensis ALE1 strain (DSM 29038) genome using the Rapid annotation using subsystem technology (RAST) annotation server

  • These results indicate that A. copahuensis is a novel species distantly related to A. hospitalis and with multiple features that are only found in particular genomes of the order Sulfolobales

Read more

Summary

Introduction

Several archaeal species from the order Sulfolobales are interesting from the biotechnological point of view due to their biomining capacities. Previous experimental characterization of A. copahuensis revealed a high biomining potential, exhibited as high oxidation activity of sulfur and sulfur compounds, ferrous iron and sulfide minerals (e.g.: pyrite). This strain is autotrophic and tolerant to heavy metals, it can grow under adverse conditions for most forms of life with a low nutrient demand, conditions that are commonly found in mining environments. For the solubilization of sulfides, two conditions are required: an oxidizing agent and an acidic medium to maintain the removed metal cations in solution Both conditions can be met by acidophilic iron- and sulfur oxidizing microorganisms; they can oxidize ferrous iron to ferric iron (a powerful oxidizing agent), and oxidize metal sulfides and sulfur compounds to sulfuric acid [1]. In the past few years, several studies have shown that thermoacidophilic archaea are able to obtain faster solubilization rates and higher copper recovery yields than most used mesophilic bioleaching bacteria [5,6,7]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.