Abstract

Canalization is a fundamental feature of many developmental systems, yet the genetic basis for this property remains elusive. We examine the genetic basis of microenvironmental canalization in the model plant Arabidopsis thaliana, focusing on differential developmental stability between genotypes in one fitness and four quantitative morphological traits. We measured developmental stability in genetically identical replicates of two populations of recombinant inbred (RI) lines and one population of geographically widespread accessions of A. thaliana grown in two different photoperiod-controlled environments. We were able to map quantitative trait loci associated with developmental stability. We also identified a candidate gene, ERECTA, that may contribute to microenvironmental canalization in rosette leaf number under long-day photoperiods, and analysis of mutant lines indicates that the er-105 allele results in increased canalization for this trait. ERECTA, which encodes a signaling protein, appears to act as an ecological amplifier by transducing developmental noise (e.g., microenvironmental variation) into phenotypic differentiation. We also measured genotypic selection on four plant architecture traits and find evidence for selection for both increased and decreased canalization at various traits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.