Abstract

The role of genotype in the durability of Scots pine (Pinus sylvestris L.) wood against decay by brown rot fungus (Coniophora puteana (Schum. ex Fr.) Karst. (strain Bam EBW 15)) was studied in a laboratory test. The wood material was obtained from 32-year-old half-sib progenies of Scots pine. The increment core samples of sapwood and juvenile heartwood were decayed using a modification of the standardized EN 113 method. The mean densities of the sapwood and heartwood samples were 391 and 337 mg·cm–3, respectively, and the mean mass losses were 114 and 80 mg·cm–3, respectively. The additive genetic components were small compared with the total phenotypic variance, which resulted in small narrow-sense heritabilities in mass loss. The most marked feature was the wide phenotypic variation in mass loss observed in heartwood (range 199 mg·cm–3) compared with sapwood (range 72 mg·cm–3) samples. Low heritability, together with the relatively high coefficient of additive genetic variation (CVA) in heartwood mass loss, suggests that advances in breeding can only be made through intensive testing in the environments which the studied experiment represents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call