Abstract

Five populations of the bathyal trochid gastropod Bathybembix bairdii (Dall) taken from depths of 579 to 1156 m in the Southern California Continental Borderland were surveyed for levels of genetic variability at 18 presumptive gene loci, using techniques of starch gel electrophoresis. All the populations were highly similar genetically; none of the populations possessed unique alleles. Four of 5 polymorphic loci scored in all the populations displayed statistically significant heterogeneity of allelic frequencies among stations. Only the diallelic fumarase (FUM) locus displayed a trend with depth. The geographic and depth patterns of the genetic variability in these populations do not support the hypothesis that the high levels of genetic variability observed in bathyal populations are an artifact of gene flow between populations differentiated with depth. The 16.2% of the loci heterozygous per individual of B. bairdii is of the same order as the average heterozygosities reported for other deep-sea invertebrate taxa. These reports of high genetic variability in a physically constant and seasonless environment are reviewed and discussed in the context of the trophic-stability hypothesis of Ayala and Valentine and the time, size and divergence hypothesis of Soule. Evidence is presented that despite the observed correlation of average heterozygosities in benthic marine invertebrates with seasonality of the trophic regime, this is not apparent for an enzyme system (leucine amino peptidase) which might be expected to display this trend if it reflected a genetic strategy to cope with trophic seasonality. The time, size and divergence hypothesis, focusing on population size, accounts for the general features of levels of genetic variability in deep-sea invertebrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.