Abstract

Helicobacter pullorum represents a potential food-borne pathogen, and avian species appear to be a relevant reservoir of this organism. In this study, the prevalence of H. pullorum was investigated at 30 conventional farms where 169 ceca from 34 flocks were tested, at eight organic farms where 39 ceca from eight flocks were tested, and at seven free-range farms where 40 ceca from eight flocks were tested. All of the ceca were obtained from healthy broiler chickens. Moreover, amplified fragment length polymorphism, pulsed-field gel electrophoresis, and automated ribotyping were employed to estimate the levels of genetic variability of H. pullorum broiler isolates within and between flocks. Overall, Gram-negative, slender, curved rods, identified as H. pullorum by PCR, were isolated at 93.3% of the farms tested. The percentage of positive free-range farms (54.2%) was significantly lower than that of conventional (100%) or organic (100%) farms (P < 0.001). The level of within-flock genetic variability, calculated as the number of flocks colonized by isolates genetically different by all of the typing methods, was 34.9%. Isolates showing identical profiles by each typing method were observed in 11.6% of the flocks, but they were never detected between flocks. However, groups of isolates clustered together with an overall similarity level of ≥85%. Our results suggest that even though a high level of genetic variability is attributable to H. pullorum broiler isolates, their hierarchical genotyping produces data useful for epidemiological investigations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call