Abstract

A central challenge in systems biology and medical genetics is to understand how interactions among genetic loci contribute to complex phenotypic traits and human diseases. While most studies have so far relied on statistical modeling and association testing procedures, machine learning and predictive modeling approaches are increasingly being applied to mining genotype-phenotype relationships, also among those associations that do not necessarily meet statistical significance at the level of individual variants, yet still contributing to the combined predictive power at the level of variant panels. Network-based analysis of genetic variants and their interaction partners is another emerging trend by which to explore how sub-network level features contribute to complex disease processes and related phenotypes. In this review, we describe the basic concepts and algorithms behind machine learning-based genetic feature selection approaches, their potential benefits and limitations in genome-wide setting, and how physical or genetic interaction networks could be used as a priori information for providing improved predictive power and mechanistic insights into the disease networks. These developments are geared toward explaining a part of the missing heritability, and when combined with individual genomic profiling, such systems medicine approaches may also provide a principled means for tailoring personalized treatment strategies in the future.

Highlights

  • Most disease phenotypes are genetically complex, with contributions from combinations of genetic variation in different loci

  • The recent advances and wide availability of genetic technologies, such as those based on genome-wide association (GWA) and next-generation sequencing (NGS), have allowed for the in-depth analysis of the variation contained in the human genome

  • These technologies are enabling the investigation of the genetic architecture of complex diseases, with the aim of constructing more accurate disease risk prediction models that would eventually facilitate effective approaches to personalized prevention and treatment alternatives for many diseases [1,2]

Read more

Summary

Introduction

Most disease phenotypes are genetically complex, with contributions from combinations of genetic variation in different loci. We discuss how computational machine learning approaches can utilize hidden interactions among panels of the genetic and other risk factors, predictive of the individual disease risk by means of implementing genetic feature selection procedures and network-guided predictive models.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.