Abstract

Optical recording of the electrical activity of individual neurons in culture or in a tissue requires cell-selective staining with a fluorescent voltage-sensitive dye. In a proof-of-principle experiment, we implement a novel approach to genetically targeted staining. The method relies on a water-soluble precursor dye and an overexpressed cell-surface enzyme that transforms the precursor into a hydrophobic dye that binds to the targeted cell. We fused an alkaline phosphatase to a specifically designed general-purpose membrane anchor, and the fusion protein was expressed on the surface of HEK293 cells, as was corroborated by immuno- and histochemical staining. We next synthesised an amphiphilic hemicyanine dye containing two enzymatically cleavable phosphate groups at its hydrocarbon tails. When the phosphate groups were removed, the binding to membranes was enhanced by a factor of a thousand, as shown by titration with lipid vesicles. We observed selective staining of enzymatically active cells by fluorescence microscopy in a mixed population of phosphatase-transfected and untransfected HEK293 cells. The critical parameters of enzyme-induced cell-selective staining were elucidated by a simple kinetic model to guide further developments of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.