Abstract

Prevalence of smoking in schizophrenia (SCZ) is larger than in general population. Genetic studies provided some evidence of a causal effect of smoking on SCZ. We aim to characterize the genetic susceptibility to SCZ affected by genetic susceptibility to smoking. Multi-trait-based conditional and joint analysis was applied to the largest European SCZ genome-wide association studies (GWAS) to remove genetic effects on SCZ driven by smoking, estimated by generalized summary data-based Mendelian randomization. Enrichment analysis was performed to compare original v. conditional GWAS. Change in genetic correlation between SCZ and relevant traits after conditioning was assessed. Colocalization analysis was performed to identify specific loci confirming general findings. Conditional analysis identified 19 new risk loci for SCZ and 42 lost loci whose association with SCZ may be partially driven by smoking. These results were strengthened by colocalization analysis. Enrichment analysis indicated a higher association of differentially expressed genes at prenatal brain stages after conditioning. Genetic correlation of SCZ with substance use and dependence, attention deficit-hyperactivity disorder, and several externalizing traits significantly changed after conditioning. Colocalization of association signal between SCZ and these traits was identified for some of the lost loci, such as CHRNA2, CUL3, and PCDH7. Our approach led to identification of potential new SCZ loci, loci partially associated to SCZ through smoking, and a shared genetic susceptibility between SCZ and smoking behavior related to externalizing phenotypes. Application of this approach to other psychiatric disorders and substances may lead to a better understanding of the role of substances on mental health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call