Abstract

The pattern of genetic variation in a butterfly species depends on the past history of the given species and also on recent evolutionary processes affecting its populations. The aim of the present study was (i) to analyse the enzyme polymorphism in the Clouded Apollo populations of the Carpathian Basin to reveal the contemporary pattern of their genetic differentiation and (ii) to compare it with an expanded mitochondrial DNA (mtDNA) haplotype network of the SE European populations. Allozyme polymorphism was analysed in 22 populations of four geographic regions: Transdanubian (TM) and North Hungarian Mountains (NM), Koros (KOR) and Bereg–Apuseni–East Carpathian regions (BEAC). The results of the Bayesian clustering analyses based on allozymes supported the presence of three main genetic lineages in the Carpathian Basin: One was typical for TM, another was characteristic for NM and the third cluster was predominant in KOR. The populations of BEAC harboured a mixture of two clusters. The mtDNA haplotype network suggested a fairly similar distribution: The peri-Alpine clade together with the West Balkan clade was detected in TM, while the East Balkan clade occurred in NM, partly in TR and in the two eastern regions of the Basin (KOR and BAEC). The incongruities between the results of the mtDNA and allozyme studies can be explained by the different timescales represented by the two markers. The mtDNA haplotype network provided strong evidence concerning the existence of two Balkan lineages, which probably formed a ‘zone of admixture’ in the Transdanubian and North Hungarian Mountains. The possibility of Last Glacial survival of Parnassius mnemosyne in the Carpathian Basin and the conservation implications of these results are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call