Abstract

BackgroundPleistocene climatic oscillations and historical geological events may both influence current patterns of genetic variation, and the species in southern China that faced unique climatic and topographical events have complex evolutionary histories. However, the relative contributions of climatic oscillations and geographical events to the genetic variation of these species remain undetermined. To investigate patterns of genetic variation and to test the hypotheses about the factors that shaped the distribution of this genetic variation in species of southern China, mitochondrial genes (cytochrome b and NADH dehydrogenase subunit 2) and nine microsatellite loci of the Omei tree frog (Rhacophorus omeimontis) were amplified in this study.ResultsThe genetic diversity in the populations of R. omeimontis was high. The phylogenetic trees reconstructed from the mitochondrial DNA (mtDNA) haplotypes and the Bayesian genetic clustering analysis based on microsatellite data both revealed that all populations were divided into three lineages (SC, HG and YN). The two most recent splitting events among the lineages coincided with recent geological events (including the intense uplift of the Qinghai-Tibet Plateau, QTP and the subsequent movements of the Yun-Gui Plateau, YGP) and the Pleistocene glaciations. Significant expansion signals were not detected in mismatch analyses or neutrality tests. And the effective population size of each lineage was stable during the Pleistocene.ConclusionsBased on the results of this study, complex geological events (the recent dramatic uplift of the QTP and the subsequent movements of the YGP) and the Pleistocene glaciations were apparent drivers of the rapid divergence of the R. omeimontis lineages. Each diverged lineages survived in situ with limited gene exchanges, and the stable demographics of lineages indicate that the Pleistocene climatic oscillations were inconsequential for this species. The analysis of genetic variation in populations of R. omeimontis contributes to the understanding of the effects of changes in climate and of geographical events on the dynamic development of contemporary patterns of genetic variation in the species of southern China.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-015-0572-1) contains supplementary material, which is available to authorized users.

Highlights

  • Pleistocene climatic oscillations and historical geological events may both influence current patterns of genetic variation, and the species in southern China that faced unique climatic and topographical events have complex evolutionary histories

  • In this study, based on specimens collected in seven primary areas within the distribution of R. omeimontis, we found that the entire population was highly genetically diverse

  • In this paper, we investigated the genetic structure of the populations of R. omeimontis and evaluated the relative roles of Pleistocene climatic oscillations and geological events in shaping the current patterns of genetic differentiation of the species in southern China

Read more

Summary

Introduction

Pleistocene climatic oscillations and historical geological events may both influence current patterns of genetic variation, and the species in southern China that faced unique climatic and topographical events have complex evolutionary histories. The relative contributions of climatic oscillations and geographical events to the genetic variation of these species remain undetermined. Two primary drivers, namely, Pleistocene climatic oscillations and geological events, have been used to explain the contemporary genetic variation within Northern Hemisphere species. The geographic distributions of populations and the genomes of species were markedly affected [1, 2]. The formation of geographical barriers, including the uplift of range systems, resulted in limited gene flow between populations, thereby providing opportunities for divergence due to genetic drift and natural selection [5, 6]. The current genetic variation within a species is shaped by these two processes working singly or in combination [2, 7, 8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call