Abstract

Mechanosensitive membrane channels in bacteria respond to the mechanical stretching of the membrane. They will open when bacteria are subjected to rapid osmotic down shock. MscS is a bacterial mechanosensitive channel of small conductance. It is a heptameric membrane protein whose transmembrane part, including the gate and its kinetics, has been well characterized. MscS has a large cytoplasmic domain of a cage-like shape that changes its conformation upon gating, but its involvement in gating is not understood. We screened MscS for mutations that cause potassium leak in Escherichia coli strains deficient in potassium transport systems. We did a phenotypic analysis of single and multiple mutants and recorded the single channel activities of some of them. After these analyses, we attributed the effects of a number of mutations to particular functional states of the channel. Our screen revealed that MscS leaks potassium in a desensitized and in an inactivated state. It also appeared that the lower part of TM3 (transmembrane, pore-forming helix) and the cytoplasmic β domain are tightly packed in the inactivated state but are dissociated in the open state. We attribute the TM3-β interaction to stabilization of the inactivated state in MscS and to the control of tight closure of its membrane pore.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.