Abstract

Animal genetic resources (AnGR) are critical for global food security and livelihoods. Livestock products have high densities of energy, protein, and other critical nutrients, which are particularly beneficial for infants and expectant mothers. Around a billion people rely directly on livestock for their livelihoods, many of which are among the rural poor (FAO, 2009). Demand for animal products is foreseen to increase significantly in the future while competition for resources will intensify, dictating that livestock systems must increase both productivity and efficiency. Maintaining sufficient diversity of AnGR is necessary to ensure adaptation potential in times of uncertainty. In the future, climate change is expected to be a major force testing resilience of global food production systems (Thornton et al., 2009; Renaudeau et al., 2012). Ensuring that livestock systems remain productive and efficient while maintaining their flexibility will be a major challenge. Adaptation to climate change is unlikely to be achieved with a single strategy (Hoffmann, 2010). Clearly, modifications will be needed in animals' housing, reproduction, nutrition, and health care. Genetic changes in the animals (both within and across species) will also play a role. Preparation for these transformations will require a significant research commitment and genomics will play a role in the genetic measures taken for adaptation of livestock to climate change.

Highlights

  • Animal genetic resources (AnGR) are critical for global food security and livelihoods

  • Genetic changes in the animals will play a role. Preparation for these transformations will require a significant research commitment and genomics will play a role in the genetic measures taken for adaptation of livestock to climate change

  • The study of adaptation implies the use of a “landscape approach,” with detailed information describing the production system (e.g., FAO, 2012), including socio-economic information (e.g., Drucker, 2010) and indigenous knowledge about management of the breed in its environment as well as geographic coordinates to incorporate climatic data and soil, vegetation, and water resources

Read more

Summary

Introduction

INTRODUCTION Animal genetic resources (AnGR) are critical for global food security and livelihoods. Preparation for these transformations will require a significant research commitment and genomics will play a role in the genetic measures taken for adaptation of livestock to climate change. Many livestock breeds have been genetically characterized (e.g., Groeneveld et al, 2010), but the value of these data for study of adaptation is questionable.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.