Abstract

The deformation features (e.g., undulose extinction and subgrain boundaries) and low Ca content (<1000 ppm) of high-Fo olivine have been widely used as indictors for the mantle origin of olivine in the past. However, grains with these characteristics are also found in some crustal intrusions, e.g., Duke Island and Bushveld complexes. Here, we study this type of olivine in the Poyi ultramafic intrusion, NW China, to trace the formation of these unusual features in magmatic systems. As a result of the possible Ca-depleted parental melt and low Ca olivine/melt partition coefficient, olivine from the Poyi intrusion is extremely depleted in Ca. On the other hand, it has been confirmed that trace elements with large ionic radii (e.g., Ca2+ and Al3+) are chemically segregated at the grain boundary of olivine, exerting a dragging influence on grain boundary processes (named as solute drag effect). In this regard, the low Ca content in olivine weakens the solute drag effect, and in doing so it enhances the rate and strength of grain deformation, which occurs to accommodate the stress derived by fast compaction of the crystal mush in Poyi intrusion. Therefore, there is a genetic relationship between the plastic deformation and low Ca content in olivines from magmatic cumulates, and this link is one of the reasons causing the widespread deformation observed in Ca-depleted olivine from Poyi and other intrusions. What is more important, this work fills the gaps in the interpretation of this type of olivine in volcanic rocks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.