Abstract

The ubiquitous presence of undulose extinction and subgrain boundaries in olivine crystals is commonly perceived as originating in the mantle, however these plastic deformation features are also well developed in the Poyi ultramafic intrusion, NW China. In this case, olivine was deformed through kinetic processes in a crustal magma chamber, rather than by deformation processes in the upper mantle. Moreover, accumulation and textural coarsening were critical to the characteristics of crystal size distributions (CSDs) of olivines in the Poyi intrusion. The axial deformational compaction of crystal mush was revealed by virtue of other quantitative textural analyses (e.g., spatial distribution patter, alignment factor and aspect ratio). Additionally, based on the contrast of density between crystal matrix and interstitial melt, adequate stress was generated by the km-scale crystal framework in Poyi body (~2–11MPa) which triggered the distortion of grain-lattice in olivine. The deformation mechanisms of olivine primarily are dislocation creep and dislocation-accommodated grain boundary sliding (DisGBS), while diffusion creep is subsidiary. This study has revealed various kinetic processes in a magmatic system by first demonstrating the genetic relationship between mineral deformation and axial compaction of crystal mush while highlighting the uncertainty of employing the deformation features of olivine in peridotite xenoliths as an indicator for a mantle origin. In contrast to the olivine populations of xenocrysts that underwent fragmentation during ascent, the deformed primitive olivines in compaction exhibit a distinct shortage of small grains, which is conducive to delimiting these two types of deformed grains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.