Abstract

Genetically altered transacylase (E2b) proteins of the bovine branched-chain alpha-keto acid dehydrogenase complex were overexpressed in Escherichia coli and characterized. Deletion by PstI or Bal31 digestion of the amino-terminal region of the inner-core domain (residues 175-421) beyond residue 209 resulted in a complete loss of transacylase activity. The enzyme assay was carried out using [1-14C]isovaleryl-CoA and exogenous dihydrolipoamide as substrates. The removal of 4 residues (Thr-Ile-Pro-Ile) (residues 175-178) from the amino terminus of the inner-core domain significantly reduced the level of transacylase activity. The results establish that the segment between residues 175 and 209 is an integral part of the active site of E2b. The residue His-391 in the recombinant inner-core domain (E2b delta 167) was changed to Asn or Gln by site-directed mutagenesis. The wild-type and the two mutant inner-core domains were assembled into 24-mers as determined by gel filtration. However, both Asn and Gln mutations were accompanied by a complete loss of the enzymatic activity. Titration of the natural branched-chain alpha-keto dehydrogenase complex from pH 8 to 6 sharply reduced transacylase activity. The above data support the hypothesis that a conserved histidine residue in E2 acts as a general base for the transacylation reaction by analogy with E. coli chloramphenicol acetyltransferases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.