Abstract

Evolutionary algorithms are a family of stochastic search heuristics that include Genetic Algorithms (GA) and Genetic Programming (GP). Both GAs and GPs have been successful in many applications, mainly with static scenarios. However, many real world applications involve dynamic environments (DE). Many work has been made to adapt GAs to DEs, but only a few efforts in adapting GPs for this kind of environments. In this paper we present novel GP algorithms for dynamic environments and study their performance using three dynamic benchmark problems, from the areas of Symbolic Regression, Classification and Path Planning. Furthermore, we apply the best algorithm we found in the navigation of an Erratic Robot through a dynamic Santa Fe Ant Trail and compare its performance to the standard GP algorithm. The results, statistically validated, are very promising.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.