Abstract
In recent years, several approaches have been developed for genetic algorithms to enhance their performance in dynamic environments. Among these approaches, one kind of methods is to adapt genetic operators in order for genetic algorithms to adapt to a new environment. This paper investigates the effect of the selection pressure on the performance of genetic algorithms in dynamic environments. A hyper-selection scheme is proposed for genetic algorithms, where the selection pressure is temporarily raised whenever the environment changes. The hyper-selection scheme can be combined with other approaches for genetic algorithms in dynamic environments. Experiments are carried out to investigate the effect of different selection pressures on the performance of genetic algorithms in dynamic environments and to investigate the effect of the hyper-selection scheme on the performance of genetic algorithms in combination with several other schemes in dynamic environments. The experimental results indicate that the effect of the hyper-selection scheme depends on the problem under consideration and other schemes combined in genetic algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.