Abstract

A binary genetic algorithm with floating crossover and mutation probabilities is used to design two-dimensional photonic crystals for large absolute band gaps under a light line. The unit cell is composed of a small number of round rods and is arranged in a square lattice. The photonic band structure of each chromosome is calculated by the plane-wave expansion method. Starting from randomly generated photonic crystals, the genetic algorithm finally yielded a photonic crystal with an absolute common band gap of 0.0618(2πc/a) at the mid-frequency of 0.4084(2πc/a).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call