Abstract

Two-dimensional (2D) photonic band gaps (PBG) structure fabricated from anisotropic dielectric is studied by solving Maxwell’s equations with use of plane-wave expansion method. Numerical simulations show that absolute photonic band gaps can be substantially improved in two dimensional square and triangular lattices of cylinders by introducing anisotropy in material dielectricity. Owing to different refractive indices for electromagnetic waves with E- and H-polarization, the quasi-independent adjustment of band gaps for the E- and H-polarization modes can be implemented by uniaxial crystals with their extraordinary axis parallel to the cylinders. Large absolute band gaps can be created for uniaxial cylinders in air with a positive anisotropy. In the case of air holes in background uniaxial dielectric with even a weak negative anisotropy, the absolute band gap can be increased 2–3 times. Large absolute band gap can also be obtained in other complex configurations of uniaxial and biaxial materials and this enables a full exploitation of potential utilization for anisotropic materials available in nature. Such a mechanism of band gap adjustment should open up a new scope for designing band gaps in 2D PBG structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call