Abstract
Many biological processes, from cellular metabolism to population dynamics, are characterized by particular allometric scaling relationships between rate and size (power laws). A statistical model for mapping specific quantitative trait loci (QTLs) that are responsible for allometric scaling laws has been developed. We present an improved model for allometric mapping of QTLs based on a more general allometry equation. This improved model includes two steps: (1) use model II regression analysis to estimate the parameters underlying universal allometric scaling laws, and (2) substitute the estimated allometric parameters in the mixture-based mapping model to obtain the estimation of QTL position and effects. This model has been validated by a real example for a mouse F2 progeny, in which two QTLs were detected on different chromosomes that determine the allometric relationship between growth rate and body weight.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.