Abstract

BackgroundSegregation distortion (SD) is a common phenomenon among stable or segregating populations, and the principle behind it still puzzles many researchers. The F2:3 progenies developed from the wild cotton species of the D genomes were used to investigate the possible plant transcription factors within the segregation distortion regions (SDRs). A consensus map was developed between two maps from the four D genomes, map A derived from F2:3 progenies of Gossypium klotzschianum and G. davidsonii while Map B from G. thurberi and G. trilobum F2:3 generations. In each map, 188 individual plants were used.ResultsThe consensus linkage map had 1 492 markers across the 13 linkage groups with a map size of 1 467.445 cM and an average marker distance of 1.037 0 cM. Chromosome D502 had the highest percentage of SD with 58.6%, followed by Chromosome D507 with 47.9%. Six thousand and thirty-eight genes were mined within the SDRs on chromosome D502 and D507 of the consensus map. Within chromosome D502 and D507, 2 308 and 3 730 genes were mined, respectively, and were found to belong to 1 117 gourp out of which 622 groups were common across the two chromosomes. Moreover, genes within the top 9 groups related to plant resistance genes (R genes), whereas 188 genes encoding protein kinase domain (PF00069) comprised the largest group. Further analysis of the dominant gene group revealed that 287 miRNAs were found to target various genes, such as the gra-miR398, gra-miR5207, miR164a, miR164b, miR164c among others, which have been found to target top-ranked stress-responsive transcription factors such as NAC genes. Moreover, some of the stress- responsive cis-regulatory elements were also detected. Furthermore, RNA profiling of the genes from the dominant family showed that higher numbers of genes were highly upregulated under salt and osmotic stress conditions, and also they were highly expressed at different stages of fiber development.ConclusionThe results indicated the critical role of the SDRs in the evolution of the key regulatory genes in plants.

Highlights

  • Segregation distortion (SD) is a common phenomenon among stable or segregating populations, and the principle behind it still puzzles many researchers

  • The second map, designated as map B, was derived by genotyping the F2:3 population developed between G. thurberi and G. trilobum, and 849 polymorphic markers were used in the linkage map construction

  • The use of genetic map analysis has become increasingly significant in understanding markers-assisted selection, gene mining and cloning

Read more

Summary

Introduction

Segregation distortion (SD) is a common phenomenon among stable or segregating populations, and the principle behind it still puzzles many researchers. The F2:3 progenies developed from the wild cotton species of the D genomes were used to investigate the possible plant transcription factors within the segregation distortion regions (SDRs). Some of the factors that may lead to SDs include gametic and zygotic selections, non-homologous chromosome recombination, gene transfer, environmental agents, mapping population, marker types and genetic transmission (Mello et al 1991). During the construction of genetic maps, it has been observed that some alleles in chromosomal regions skew from the normal Mendelian ratio. These alleles tend to cluster at segments of the chromosome, and these regions are referred to as the segregation distortion region (SDR) (Lu et al 2002). SD has been observed in a variety of populations of organisms including insects (Sandler and Golic 1985), plants (Yuan et al 2019), and mammals (Kumari et al 1992)

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.