Abstract
AbstractFusarium wilt (FW), caused by Fusarium oxysporum f. sp. lycopersici (Fol), has impacted global tomato production. This study aims to identify single nucleotide polymorphisms (SNPs) and candidate genes associated with FW resistance against different Fol isolates in tomato accessions using genome‐wide association studies (GWAS). Ninety‐four tomato accessions were evaluated for FW resistance and subjected to GWAS analysis. Broad‐spectrum tomato accessions demonstrated resistance to Fol in at least two isolates, exhibiting a disease severity index (DSI) of 0%. Thirty‐two SNP loci were significantly linked to the DSI of Fol isolates TFPK401, BK2269 and NP‐T4, clustering on chromosome 6. Among these, 12 common significant SNPs were associated with the DSI of at least two Fol isolates, while four unique SNPs were specific to TFPK401 or NP‐T4. Furthermore, candidate genes associated with disease response to Fol infection were identified within a 37.9–41 Mb region flanking the SNPs. These findings contribute to a deeper understanding of resistance mechanisms against Fol infection in tomatoes, potentially aiding the development of effective breeding strategies for Fusarium wilt resistance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have