Abstract
Brown Norway (BN) and BN Katholiek (BN/Ka) rat strains are both susceptible to develop lesions in the internal elastic lamina (IEL) of the aorta. BN/Ka rats are characterized by a single point mutation in the kininogen gene leading to deficiency in high- and low-molecular-weight kininogen. Recently, a suggestive quantitative trait locus for lesions in the IEL of the abdominal aorta was identified in an F2 intercross between Dahl salt-sensitive (SS) and BN rats, implicating kininogen as a positional candidate gene. Therefore, BN and BN/Ka rat strains represent ideal model organisms with which to study the contribution of kininogen to the genetic predisposition to IEL lesion formation and to characterize the early events underlying vascular remodeling. Here we present data demonstrating that genetic kininogen deficiency promotes the formation of aneurysms in the abdominal aorta but not the development of atherosclerosis upon 12-wk treatment with an atherogenic diet. Aneurysm formation was associated with an enhanced elastolysis, increased expression of MMP-2 and MMP-3, downregulation of TIMP-4, and with FasL- and caspase-3-mediated apoptosis. Kininogen-deficient animals also featured changes in plasma cytokines compatible with apoptotic vascular damage, i.e., upregulation of IFN-gamma and downregulation of GM-CSF and IL-1beta. Finally, in response to atherogenic diet, kininogen-deficient animals developed an increase in HDL/total cholesterol index, pronounced fatty liver and heart degeneration, and lipid depositions in aortic media without atherosclerotic plaque formation. These findings suggest that genetic kininogen deficiency renders vascular tissue prone to aneurysmatic but not to atherosclerotic lesions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.