Abstract
Ucc1, an F-box motif-containing protein of Saccharomyces cerevisiae encoded by UCC1 regulates energy metabolism through proteasomal degradation of citrate synthase Cit2 and inactivation of the glyoxylate cycle when glucose is present as the main carbon source in the growth medium. Rrm3, a Pif1 family DNA helicase, encoded by RRM3 regulates the movement of the replication forks during the DNA replication process. Here in this study, we present evidence of binary genetic interaction between both the genes, UCC1 and RRM3, that determine the growth rate, cell morphology, cell size, apoptosis, and stress response. The absence of both genes UCC1 and RRM3 leads to altered cell morphology, increased growth rate, utilization of alternate carbon sources, resistance to hydrogen peroxide, and susceptibility to acetic acid-induced apoptosis. Further, the genetic interaction network analysis shows both the genes UCC1 and RRM3 interaction through the SGS1 and cross-link among metabolic, glyoxylate, DNA replication, and retrograde signaling pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.