Abstract
We used microsatellite genetic markers to investigate adult population structure and the formation of a new year-class in Sebastes mystinus (blue rockfish). Since S. mystinus may live as long as 45 years and reach reproductive age at approximately 5 years, the adult population may contain as many as eight generations of reproductive adults. We investigated whether the juveniles of the 2000 year-class and the adult population were genetically homogeneous along the California coast. We sampled approximately 100 juveniles from three sites, two sites along the Monterey Peninsula (Carmel and Monterey) in central California and one at Fort Ross in northern California, and approximately 50 adult S. mystinus from five sites throughout the population center. The adult sampling spanned approximately 700 km from the northern Channel Islands to Fort Bragg. The juveniles showed significant heterogeneity in allele frequencies among distant locations and genetic homogeneity among adjacent locations. In contrast, the adults showed genetic homogeneity over large distances (San Miguel Island to Fort Bragg), indicating little limitation of gene flow in this region. Allele frequencies of juveniles differed from adult samples and in some cases reduced genetic diversity indicative of sweepstakes recruitment (small sample of the adult reproductive potential). The genetic structure of the 2000 year-class suggests that despite a genetically homogenous adult population, settled juveniles can be genetically heterogeneous along the California coast. The results also suggest that the adults, with several year-classes, are capable of maintaining a panmictic population despite the genetic distinctiveness of individual year-classes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have