Abstract

Glucose and other C sources exert an atypical form of catabolic repression on the sigma54-dependent promoter Pu, which drives transcription of an operon for m-xylene degradation encoded by the TOL plasmid pWW0 in Pseudomonas putida. We have used a genetic approach to identify the catabolite(s) shared by all known repressive C sources that appears to act as the intracellular signal that triggers downregulation of Pu. To this end, we reconstructed from genomic data the pathways for metabolism of repressor (glucose, gluconate) and nonrepressor (fructose) C sources. Since P. putida lacks fructose-6-phosphate kinase, glucose and gluconate appear to be metabolized exclusively by the Entner-Doudoroff (ED) pathway, while fructose can be channeled through the Embden-Meyerhof (EM) route. An insertion in the gene fda (encoding fructose-1,6-bisphosphatase) that forces fructose metabolism to be routed exclusively to the ED pathway makes this sugar inhibitory for Pu. On the contrary, a crc mutation known to stimulate expression of the ED enzymes causes the promoter to be less sensitive to glucose. Interrupting the ED pathway by knocking out eda (encoding 2-dehydro-3-deoxyphosphogluconate aldolase) exacerbates the inhibitory effect of glucose in Pu. These observations pinpoint the key catabolites of the ED route, 6-phosphogluconate and/or 2-dehydro-3-deoxyphosphogluconate, as the intermediates that signal Pu repression. This notion is strengthened by the observation that 2-ketogluconate, which enters the ED pathway by conversion into these compounds, is a strong repressor of the Pu promoter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.