Abstract
Genetic evaluations of local cattle breeds are hampered due to small reference groups or biased due to the utilization of SNP effects estimated in other large populations. Against this background, there is a lack of studies addressing the possible advantage of whole-genome sequences (WGS) or consideration of specific variants from WGS data in genomic predictions for local breeds with small population size. Consequently, the aim of this study was to compare genetic parameters and accuracies of genomic estimated breeding values (GEBV) for 305-d production traits, fat-to protein ratio (FPR), and somatic cell score (SCS) at the first test date after calving and confirmation traits of the endangered German Black Pied cattle (DSN) breed using 4 different marker panels: (1) the commercial 50K Illumina BovineSNP50 BeadChip, (2) a customized 200K chip designed for DSN (DSN200K) which considers the most important variants for DSN from WGS, (3) randomly generated 200K chips based on WGS data, and (4) a WGS panel. The same number of animals was considered for all marker panel analyses (i.e., 1,811 genotyped or sequenced cows for conformation traits, 2,383 cows for lactation production traits, and 2,420 cows for FPR and SCS). Mixed models for the estimation of genetic parameters directly included the respective genomic relationship matrix from the different marker panels plus the trait-specific fixed effects. For the calculation of GEBV accuracies, we applied repeated random subsampling validation. In the process of separate cross-validations per trait, we created a validation set including 20% of cows with masked phenotypes, and a training set comprising 80% of the cows. The cows were selected randomly in a procedure with 10 replicates considering replacements in the different scenarios. The accuracy was defined as the correlation between the direct GEBV and the phenotypes with subtracted corresponding fixed effects for the cows in the validation set. For FPR and SCS, as well as for lactation production traits, heritabilities were largest based on WGS data, but the increase compared with the 50K or DSN200K applications was quite small in the range from 0.01 to 0.03. Also, for most of the conformation traits, heritabilities were largest based on WGS and DSN200K data, but the increase was in the range of the corresponding standard error. Accordingly, GEBV accuracies for most of the studied traits were highest based on WGS data or when utilizing the DSN200K chip, but the accuracy differences across the marker panels were quite small and nonsignificant. In conclusion, WGS data and the DSN200K chip only contributed to minor improvements in genomic predictions, still justifying the use of the commercial 50K chip. Nevertheless, WGS and the 200KDSN chip harbor breed-specific variants, which are valuable for studying causal genetic mechanisms in the endangered DSN population.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have