Abstract
Genetic resistance is often the least expensive, most effective, and ecologically-sound method of disease control. It is becoming apparent that plant genomes contain large numbers of disease resistance genes. However, the numbers of different resistance specificities within a genepool and the genetic mechanisms generating diversity are poorly understood. Our objectives were to characterize diversity in clusters of resistance genes in wild progenitors of cultivated lettuce in Israel and California in comparison to diversity within cultivated lettuce, and to determine the extent of gene flow, recombination, and genetic instability in generating variation within clusters of resistance genes. Genetic diversity of resistance genes was analyzed in wild and cultivated germplasm using molecular markers derived from lettuce resistance gene sequences of the NBS-LRR type that mapped to the major cluster if resistance genes in lettuce (Sicard et al. 1999). Three molecular markers, one microsatellite marker and two SCAR markers that amplified LRR- encoding regions, were developed from sequences of resistance gene homologs at the Dm3 cluster (RGC2s) in lettuce. Variation for these markers was assessed in germplasm including 74 genotypes of cultivated lettuce, L. saliva and 71 accessions of the three wild Lactuca spp., L. serriola, L. saligna and L. virosa that represent the major species in the sexually accessible genepool for lettuce. Diversity was also studied within and between natural populations of L. serriola from Israel and California. Large numbers of haplotypes were detected indicating the presence of numerous resistance genes in wild species. We documented a variety of genetic events occurring at clusters of resistance genes for the second objective (Sicard et al., 1999; Woo el al., in prep; Kuang et al., in prepb). The diversity of resistance genes in haplotypes provided evidence for gene duplication and unequal crossing over during the evolution of this cluster of resistance genes. Comparison of nine resistance genes in cv. Diana identified 22 gene conversion and five intergenic recombinations. We cloned and sequenced a 700 bp region from the middle of RGC2 genes from six genotypes, two each from L. saliva, L. serriola, and L. saligna . We have identified over 60 unique RGC2 sequences. Phylogenetic analysis surprisingly demonstrated much greater similarity between than within genotypes. This led to the realization that resistance genes are evolving much slower than had previously been assumed and to a new model as to how resistance genes are evolving (Michelmore and Meyers, 1998). The genetic structure of L. serriola was studied using 319 AFLP markers (Kuang et al., in prepa). Forty-one populations from Turkey, Armenia, Israel, and California as well as seven European countries were examined. AFLP marker data showed that the Turkish and Armenian populations were the most polymorphic populations and the European populations were the least. The Davis, CA population, a recent post-Columbian colonization, showed medium genetic diversity and was genetically close to the Turkish populations. Our results suggest that Turkey - Armenia may be the center of origin and diversity of L. serriola and may therefore have the greatest diversity of resistance genes. Our characterization of the diversity of resistance genes and the genetic mechanisms generating it will allow informed exploration, in situ and ex situ conservation, and utilization of germplasm resources for disease control. The results of this project provide the basis for our future research work, which will lead to a detailed understanding of the evolution of resistance genes in plants.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have