Abstract

Resistance to the thiocarbamates has been selected in early watergrass populations within the rice-growing region of California. To elucidate the processes contributing to the spread of resistance among rice fields, we characterized the genetic diversity and differentiation of thiobencarb-resistant (R) and thiobencarb-susceptible (S) populations across the Central Valley using microsatellite markers. A total of 406 individuals from 22 populations were genotyped using seven nuclear microsatellite primer pairs. Three analytical approaches (unshared allele, Shannon–Weaver, and allelic-phenotype statistics) were used to assess genetic diversity and differentiation in the allohexaploid species. Low levels of genetic variation were detected within populations, consistent with other highly selfing species, with S populations tending to be more diverse than R populations.FSTvalues indicated that populations were genetically differentiated and that genetic differentiation was greater among S populations than R populations. Principal coordinate analysis generated two orthogonal axes that explained 88% of the genetic variance among early watergrass populations and differentiated populations by geographical region, which was associated with resistance phenotype. A Mantel test revealed that genetic distances between R populations were positively correlated with the geographical distances separating populations. Taken together, our results suggest that both short- and long-distance seed dispersal, and multiple local and independent evolutionary events, are involved in the spread of thiobencarb-resistant early watergrass across rice fields in the Sacramento Valley. In contrast, resistance was not detected in early watergrass populations in the San Joaquin Valley.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.