Abstract

One hundred and forty-six highly polymorphic simple sequence repeat (SSR) markers were used to assess the genetic diversity and population structure of 196 peanut (Arachis Hypogaea L.) cultivars which had been extensively planted in different regions in China. These SSR markers amplified 440 polymorphic bands with an average of 2.99, and the average gene diversity index was 0.11. Eighty-six rare alleles with a frequency of less than 1% were identified in these cultivars. The largest Fst or genetic distance was found between the cultivars that adapted to the south regions and those to the north regions in China. A neighbor-joining tree of cultivars adapted to different ecological regions was constructed based on pairwise Nei’s genetic distances, which showed a significant difference between cultivars from the south and the north regions. A model-based population structure analysis divided these peanut cultivars into five subpopulations (P1a, P1b, P2, P3a and P3b). P1a and P1b included most the cultivars from the southern provinces including Guangdong, Guangxi and Fujian. P2 population consisted of the cultivars from Hubei province and parts from Shandong and Henan. P3a and P3b had cultivars from the northern provinces including Shandong, Anhui, Henan, Hebei, Jiangsu and the Yangtze River region including Sichuan province. The cluster analysis, PCoA and PCA based on the marker genotypes, revealed five distinct clusters for the entire population that were related to their germplasm regions. The results indicated that there were obvious genetic variations between cultivars from the south and the north, and there were distinct genetic differentiation among individual cultivars from the south and the north. Taken together, these results provided a molecular basis for understanding genetic diversity of Chinese peanut cultivars.

Highlights

  • The cultivated peanut, Arachis hypogaea L., is an important oilseed and cash crop worldwide

  • Comparing of peanut genetic diversity simple sequence repeat (SSR) markers have been extensively used to detect the variability in peanut genotypes and to evaluate their genetic diversity

  • The genetic diversity of the 196 Chinese peanut cultivars in this study was at a lower level, as

Read more

Summary

Introduction

The cultivated peanut, Arachis hypogaea L., is an important oilseed and cash crop worldwide. It is one of the primary sources of vegetable oil and protein in developing countries. The peanut annual planting area is around 24 million hectares, with an annual production of nearly 35 million tons (http://apps.fao.org/cgi-bin/ nph-db.pl?subset = agriculture). China is the largest peanut producer in the world with over 20% of planting area and more than 40% of production. During the last five decades, cultivated peanut had been subjected to intensive artificial selection, resulting in favorable changes in yield, disease resistance, biochemical composition and other agronomic traits [1,2]. Remarked progress had been made in peanut genetic improvement of yield [1]. More than 70% of the cultivars were affirmed to contain co-ancestors ‘Fuhuasheng’ and ‘Shitouqi’ by pedigree analysis [1,2], showing that the Chinese peanut cultivars could have a narrow genetic basis for peanut varieties

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call