Abstract

Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR) markers were applied to evaluate the genetic diversity and population structure of 348 C. mandshurica individuals among 12 populations in China. The SSR markers expressed a relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, and He = 0.7777). According to the coefficient of genetic differentiation (F st = 0.1215), genetic variation within the populations (87.85%) were remarkably higher than among populations (12.15%). The average gene flow (Nm = 1.8080) significantly impacts the genetic structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080) among wild C. mandshurica may be caused by wind-pollinated flowers, highly nutritious seeds and self-incompatible mating system. The UPGMA (unweighted pair group method of arithmetic averages) dendrogram was divided into two main clusters. Moreover, the results of STRUCTURE analysis suggested that C. mandshurica populations fell into two main clusters. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among populations of C. mandshurica. Group I accessions were located in Northeast China, while Group II accessions were in North China. It is worth noting that a number of genetically similar populations were located in the same geographic region. The results further showed that there was obvious genetic differentiation among populations from Northeast China to North China. Results from the Mantel test showed a weak but still significant positive correlation between Nei’s genetic distance and geographic distance (km) among populations (r = 0.419, P = 0.005), suggesting that genetic differentiation in the 12 C. mandshurica populations might be related to geographic distance. These data provide comprehensive information for the development of conservation strategies of these valuable hazelnut resources.

Highlights

  • Hazelnut, Corylus mandshurica Maxim. et Rupr, belongs to the family Betulaceae and is an important species, both economically and ecologically, among nut trees

  • We present the first investigation of genetic diversity of wide-ranging hazelnut (C. mandshurica) in China, with a particular focus on population structure using simple sequence repeat (SSR) markers

  • The results showed that distinct genetic differentiation among populations from Northeast China and North China

Read more

Summary

Introduction

Corylus mandshurica Maxim. et Rupr (synonym to C. sieboldiana), belongs to the family Betulaceae and is an important species, both economically and ecologically, among nut trees. Et Rupr (synonym to C. sieboldiana), belongs to the family Betulaceae and is an important species, both economically and ecologically, among nut trees. C. mandshurica is a deciduous shrub of about 2 to 6 m in height with bracts forming a tubular husk [1,2,3].The leaves are irregularly serrate and ovate leaves alternate with circular leaves. Their abaxial surface is covered heavily with pubescence. In addition to its economic value, hazelnut is useful for soil and water conservation and sustainable use of local forests [8]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call