Abstract
Reproductive isolation is the defining characteristic of a biological species, and a common, but often untested prediction is a positive correlation between reproductive isolation and genetic divergence. Here, we test for this correlation in odonates, an order characterized by strong sexual selection. First, we measure reproductive isolation and genetic divergence in eight damselfly genera (30 species pairs) and test for a positive correlation. Second, we estimate the genetic threshold preventing hybrid formation and empirically test this threshold using wild populations of species within the Ischnura genus. Our results indicate a positive and strong correlation between reproductive isolation and genetic distance using both mitochondrial and nuclear genes cytochrome oxidase II (COII: r=0.781 and 18S-28S: r=0.658). Hybridization thresholds range from -0.43 to 1.78% for COII and -0.052-0.71% for 18S-28S, and both F1 -hybrids and backcrosses were detected in wild populations of two pairs of Ischnura species with overlapping thresholds. Our study suggests that threshold values are suitable to identify species prone to hybridization and that positive isolation-divergence relationships are taxonomically widespread.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.