Abstract

The role of 19 structural, developmental and biochemical traits in relation to specific adaptation was analysed in a set of 17 diverse lines with quantified adaptation, representing contemporary cultivars and land races of chickpea (Cicer arietinum L.), using multivariate analysis. Significant varietal variation was observed for most characters, particularly for the activity of the enzyme nitrate reductase (NR) and protein content in the plant. The distance analysis (D(2)-statistic) revealed that seed size and pod number and their associated attributes were important forces of divergence. The additional forces of divergence were NR activity at the flower initiation stage, yield components such as number of primary and secondary branches, and other features such as plant habit and duration of flowering. The principal component analysis revealed some similarities and also differences from the distance analysis. Leaf size, days to flower initiation, seed size and, to some extent, NR activity at flower initiation stage, were important in the first vector. Developmental traits such as chlorophyll depth, NR activity at the pod initiation and grain filling stages, and the percent protein content in the plant at flower initiation were important in the second vector. In general, the clustering pattern was not related to the geographical origin, seed colour, size of regression coefficient for yield, or deviation from linearity. The importance of the developmental and biochemical attributes in the divergence of cultivated chickpea, such as days to flower initiation, duration of flowering, NR activity and the rates of protein accumulation in developing seeds, and in adaptation, suggests the critical role of these attributes. NR activity at the flower initiation stage would appear to have a major role in the domestication of this crop and its intra-specific differentiation, as an increased seed size could not have been possible without better nutrient uptake and utilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.