Abstract
The cotyledons of soybean begin to develop photosynthetic capacity shortly after emergence. The cotyledons develop nitrate reductase (NR) activity in parallel with an increase in chlorophyll and a decrease in protein. In crude extracts of 5- to 8-day-old cotyledons, NR activity is greatest with NADH as electron donor. In extracts of older cotyledons, NR activity is greatest with NADPH. Blue-Sepharose was used to purify and separate the NR activities into two fractions. When the blue-Sepharose was eluted with NADPH, NR activity was obtained which was most active with NADPH as electron donor. Assays of the NADPH-eluted NR with different concentrations of nitrate revealed that the highest activity was obtained in 80 millimolar KNO(3). Thus, this fraction has properties similar to the low nitrate affinity NAD(P)H:NR of soybean leaves. When 5- to 8-day-old cotyledons were extracted and purified, further elution of the blue-Sepharose with KNO(3), subsequent to the NADPH elution, yielded an NR fraction most active with NADH. Assays of this fraction with different nitrate concentrations revealed that this NR had a higher nitrate affinity and was similar to the NADH:NR of soybean leaves. The KNO(3)-eluted NR fraction which was purified from the extracts of 9- to 14-day-old cotyledons, was most active with NADPH. The analysis of these fractions prepared from the extracts of older cotyledons indicated that residual NAD(P)H:NR contaminated the NADH:NR. Despite this complication, the pattern of development of the purified NR fractions was consistent with the changes observed in the crude extract NR activities. It was concluded that NADH:NR was most active in young cotyledons and that as the cotyledons aged the NAD(P)H:NR became more active.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.