Abstract

To reveal the genetic basis of potassium use efficiency (KUE) in rapeseed, root morphology (RM), biomass and KUE-related traits were measured in a recombinant inbred line population with 175 F7 lines that were subjected to high-potassium (HK) and low-potassium (LK) treatments by hydroponics. A total of 109 significant QTLs were identified to be associated with the examined traits. Sixty-one of these QTLs were integrated into nine stable QTLs. The higher heritability for RM and biomass traits and lower heritability for KUE-related traits, as well as nine stable QTLs for RM traits and only two for KUE-related traits, suggested that regulating RM traits would be more effective than selecting KUE traits directly to improve KUE by marker-assisted selection. Furthermore, the integration of stable QTLs identified in the HK, LK, high-nitrogen (HN) and low-nitrogen (LN) conditions gave 10 QTL clusters. Seven of these clusters were classified into major QTLs that explained 7.4%-23.7% of the total phenotypic variation. Five of the major QTL clusters were detected under all of the treated conditions, and four clusters were specifically detected under the LK and LN conditions. These common and specific QTL clusters may be useful for the simultaneous improvement of multiple traits by marker-assisted selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.