Abstract

The roles that the myelin galactolipids galactocerebroside (GalC) and sulfatide play in cellular differentiation, myelin formation and maintenance have been investigated for nearly 3 decades. During that time the primary approach has been to perturb lipid activity using antibodies and chemical agents in artificial systems. Recently, the isolation of the gene that encodes UDP-galactose:ceramide galactosyltransferase (CGT), the enzyme that catalyzes an essential step in the synthetic pathway of GalC and sulfatide, has enabled the generation of mice that lack myelin galactolipids. These mice display a severe tremor, hindlimb paralysis and electrophysiological defects. In addition, the CGT null mutants exhibit: 1) impaired oligodendrocyte differentiation, 2) myelin sheaths that are thin, incompletely compacted and unstable, and 3) structural abnormalities in the nodal and paranodal regions including disrupted axo-glial junctions. Collectively, these findings suggest that GalC and sulfatide are essential in myelin formation and maintenance, possibly by mediating intra- and intercellular interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.