Abstract

Homer proteins mediate plasticity and signaling at the postsynaptic density of neurons and are necessary for sleep and synaptic remodeling during sleep. The goal of this study was to investigate the mechanisms of sleep regulation by Homer signaling. Using the Drosophila animal model, we demonstrate that knockdown of Homer specifically in the brain reduces sleep and that Drosophila Homer binds to the sole Drosophila mGluR, known as DmGluRA. This is the first evidence that DmGluRA, which bears greatest homology to group II mammalian metabotropic glutamate receptors (mGluRs), shares functional homology with group I mGluRs which couple to Homer proteins in mammals. As sleep is associated with the physical dissociation of Homer and mGluRs proteins at the synapse, we sought to determine the functional necessity of Homer × DmGluRA interaction in sleep regulation. Using the CRISPR/Cas9 gene editing system, we generated a targeted amino acid replacement of the putative binding site for Homer on DmGluRA to prevent Homer and DmGluRA protein binding. We found that loss of the conserved proline-rich PPXXF sequence on DmGluRA reduces Homer/DmGluRA associations and significantly reduces sleep amount. Thus, we identify a conserved mechanism of synaptic plasticity in Drosophila and demonstrate that the interaction of Homer with DmGluRA is necessary to promote sleep.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.