Abstract

Accessory gland proteins (Acps) are part of the seminal fluid of male Drosophila flies. Some Acps have exceptionally high evolutionary rates and evolve under positive selection. Proper interactions between Acps and female reproductive molecules are essential for fertilization. These observations lead to suggestions that fast evolving Acps could be involved in speciation by promoting reproductive incompatibilities between emerging species. To test this hypothesis, we used population genetics data for three sibling species: D.mayaguana, D.parisiena and D.straubae. The latter two species are morphologically very similar and show only incipient reproductive isolation. This system allowed us to examine Acp evolution at different time frames with respect to speciation and reproductive isolation. Comparing data of 14 Acp loci with data obtained for other genomic regions, we found that some Acps show extraordinarily high levels of divergence between D.mayaguana and its two sister species D.parisiena and D.straubae. This divergence was likely driven by adaptive evolution at several loci. No fixed nucleotide differences were found between D.parisiena and D.straubae, however. Nevertheless, some Acp loci did show significant differentiation between these species associated with signs of positive selection; these loci may be involved in this early phase of the speciation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.