Abstract

BackgroundNeurodevelopmental disorders (NDDs) have diverse phenotypes. Their genetic diagnoses are often challenged by difficulties of targeting causative genes due to heterogeneous genetic etiologies. The objective of this study was to perform genetic diagnosis of children with NDDs using whole genome sequencing. MethodsThis study included 78 pediatric patients with NDDs and their 152 family members for whole genome sequencing (WGS). All cases except one were families with at least two members. Seventy-five patients had previously undergone other genetic tests besides WGS. Detected variants were classified according to the guidelines of the American College of Medical Genetics and Genomics. ResultsAmong 78 probands, 26 patients were genetically diagnosed with NDDs through WGS, showing a diagnostic rate of 33.3%. Of them, 22 cases had de novo variants (DNVs) identified through trio analysis. Of these DNVs, half were novel variants. Three structural variants, including a multiexon deletion, a contiguous gene deletion involving 13 Mb, and a retrotransposon insertion, were revealed by WGS. All cases except one had defects in different genes, consistent with the phenotypically diverse nature of NDDs. In addition, three patients were inconclusive, two of them had one likely pathogenic variant in a gene associated with autosomal recessive disease and the other one had no clinical phenotypes associated with the detected DNV. ConclusionsOur experience demonstrates the advantage of WGS in the diagnosis of NDDs, including detection of copy number variations and also the advantage of trio sequencing for interpretation of DNVs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call