Abstract
Strain CAST/Ei (CAST) mice exhibit unusually low levels of high density lipoproteins (HDL) as compared with most other strains of mice, including C57BL/6J (B6). This appears to be due in part to a functional deficiency of lecithin:cholesterol acyltransferase (LCAT). LCAT mRNA expression in CAST mice is normal, but the mice exhibit several characteristics consistent with functional deficiency. First, the activity and mass of LCAT in plasma and in HDL of CAST mice were reduced significantly. Second, the HDL of CAST mice were relatively poor in phospholipids and cholesteryl esters, but rich in free cholesterol and apolipoprotein A-I (apoA-I). Third, the adrenals of CAST mice were depleted of cholesteryl esters, a phenotype similar to that observed in LCAT- and acyl-CoA:cholesterol acyltransferase-deficient mice. Fourth, in common with LCAT-deficient mice, CAST mice contained triglyceride-rich lipoproteins with "panhandle"-like protrusions. To examine the genetic bases of these differences, we studied HDL lipid levels in an intercross between strain CAST and the common laboratory strain B6 on a low fat, chow diet as well as a high fat, atherogenic diet. HDL levels exhibited complex inheritance, as 12 quantitative trait loci with significant or suggestive likelihood of observed data scores were identified. Several of the loci occurred over plausible candidate genes and these were investigated. The results indicate that the functional LCAT deficiency is unlikely to be due to variations of the LCAT gene. Our results suggest that novel genes are likely to be important in the control of HDL metabolism, and they provide evidence of genetic factors influencing the interaction of LCAT with HDL.
Highlights
Strain CAST/Ei (CAST) mice exhibit unusually low levels of high density lipoproteins (HDL) as compared with most other strains of mice, including C57BL/6J (B6)
The inverse relationship between high density lipoprotein (HDL) levels and coronary artery disease (CAD) [1] has generated interest in the metabolism of HDL and the environmental and genetic factors contributing to variations in HDL levels
Most strains of mice, such as BALB/c and C3H, maintain relatively high levels of HDL cholesterol (70–90 mg/dl) on an atherogenic diet whereas CAST mice and B6 mice exhibit about a 2-fold decrease (Table 1)
Summary
Strain CAST/Ei (CAST) mice exhibit unusually low levels of high density lipoproteins (HDL) as compared with most other strains of mice, including C57BL/6J (B6). This appears to be due in part to a functional deficiency of lecithin:cholesterol acyltransferase (LCAT). To examine the genetic bases of these differences, we studied HDL lipid levels in an intercross between strain CAST and the common laboratory strain B6 on a low fat, chow diet as well as a high fat, atherogenic diet. The genetic factors contributing to common variation in HDL levels and functional differences among human populations are poorly understood.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have