Abstract
Broccoli (Brassica oleracea L., Italica Group) is a source of glucosinolates and their respective isothiocyanate metabolites that are believed to have chemoprotective properties in humans. Glucoraphanin (4-methylsulfinyl-butyl glucosinolate) is a predominant glucosinolate of broccoli. Its cognate isothiocyanate, sulforaphane, has proven a potent inducer of phase II detoxification enzymes that protect cells against carcinogens and toxic electrophiles. Little is known about the genetic combining ability for glucosinolate levels or the types of genetic variation (i.e., additive vs. dominance) that influence those levels in broccoli. In this study, a diallel mating design was employed in two field experiments to estimate combining abilities for glucoraphanin content. The diallel population was developed by crossing nine doubled-haploid (inbred) parents in all possible combinations (36), excluding the reciprocals. Horticultural traits of all entries were assessed on a plot basis. In fall 2001, glucoraphanin concentration of broccoli heads ranged from 0.83 to 6.00 μmol/gdw, and in spring 2002, ranged from 0.26 to 7.82 μmol/gdw. In both years, significant general combining ability was observed for glucoraphanin concentration and total head content, days from transplant to harvest, head weight, and stem diameter. Conversely, no significant specific combining ability was observed for any trait in either year. Results indicate that a given inbred will combine with others to make hybrids with relatively predictable levels of head glucoraphanin as well as, other important horticultural traits. This should allow identification of inbreds that typically contribute high glucoraphanin levels when hybridized with others.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have