Abstract

Lactose metabolism is one of the most important areas of research on Lactic Acid Bacteria (LAB). In rapidly acidifying industrial Lactococcus lactis strains, lactose is transported by a lactose-specific phosphotransferase system (PTS) encoded by a plasmid. However, an alternative lactose catabolic pathway was evidenced in the plasmid-cured, and thus initially lactose-negative L. lactis IL1403. We showed that in this strain the chromosomally-encoded cellobiose-specific PTS system comprising the celB, ptcB and ptcA genes is also able to transport lactose. By expression studies in the wild type IL1403 strain and IBB550, its ccpA-deficient derivative, we demonstrated that celB, ptcB and ptcA are tightly regulated by the general catabolite repression system, whereas celB additionally requires the presence of cellobiose to be fully induced. The comparison of expression levels of sugar catabolic genes indicated that the efficiency of CcpA-mediated catabolic repression depends on conservation of the cre sequence, and that in the case of perfect matching with the cre consensus, CcpA still drives a strong repression even under non-repressing conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.