Abstract

Yersinia enterocolitica is an important foodborne pathogen that can cause a zoonotic disease known as yersiniosis, which causes symptoms such as acute diarrhea, mesenteric adenitis, terminal ileum inflammation, pseudo appendicitis, sepsis, and other complications. The mechanism of biofilm formation in Y. enterocolitica remains poorly understood, with limited research available on this topic. This study systematically examined the distribution characteristics and biofilm formation ability of Y. enterocolitica isolated from poultry and livestock related samples. Analysis of food samples collected indicated significant presence of Y. enterocolitica (207/670, 30.9 %), particularly in frozen duck meat (7/11, 63.6 %). Majority of the isolated strains did not demonstrate biofilm-forming ability (52.7 %), while a notable percentage exhibited moderate (6.8 %) to strong (11.6 %) biofilm-forming ability. Additionally, a significant percentage of strains (16/207, 7.7 %) displayed extremely high optical density/cut-off OD (OD/ODC) ratios (the average OD value of each sample divided by the average OD value of the negative controls of each 96-well plate plus 3 standard deviations) (exceeding 10). Time-course analysis of biofilm formation in 10 isolates revealed three distinct patterns: (i) rapid increase from 6 h to 12 h, with gradual peak between 48 and 72 h followed by a slight decline and stabilization; (ii) little biofilm formation at 24 h with a gradual increase up to 96 h, maintaining this level until 120 h; and (iii) complete absence of biofilm formation throughout the experiment. Subsequent examination of differentially expressed genes (DEGs) in planktonic cells and biofilms of two strains with distinct biofilm formation capabilities identified seven metabolic pathways, including ribosome, photosynthesis, fatty acid degradation, valine, leucine, and isoleucine degradation, as well as pinene, camphor, and geraniol degradation. Significantly elevated expression levels of genes associated with flagellar assembly, bacterial chemotaxis, and quorum sensing (partially) were observed exclusively in planktonic cells of the selected strain with stronger biofilm-forming ability, implying that the heightened expression of flagellar assembly and bacterial chemotaxis-related genes is an important but not sole determinant of biofilm formation. The study contributes to the elucidation of the underlying mechanisms governing biofilm formation in Y. enterocolitica and may offer valuable insights for the advancement of novel food safety strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.