Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and adolescents and accounts for approximately 2% of soft tissue sarcomas in adults. It is subcategorized into distinct subtypes based on histological features and fusion status (PAX-FOXO1/VGLL2/NCOA2). Despite advances in our understanding of the pathobiological and molecular landscape of RMS, the prognosis of these tumors has not significantly improved in recent years. Developing a better understanding of genetic abnormalities and risk stratification beyond the fusion status are crucial to developing better therapeutic strategies. Herein, we aim to highlight the genetic pathways/abnormalities involved, specifically in fusion-negative RMS, assess the currently available model systems to study RMS pathogenesis, and discuss available prognostic factors as well as their importance for risk stratification to achieve optimal therapeutic management.
Highlights
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and adolescents, with an incidence of 0.44/100,000 cases per year [1], while it is exceedingly rare in adults [2]
This review focuses on genetic abnormalities, known signaling pathways affected in FN-RMS, and highlights current existing model systems used to study RMS biology
The human skeletal muscle myoblasts (HSMM)-derived xenografts resembled histologically ERMS, while skeletal muscle cell (SkMC) did not show any morphological features reminiscent of ARMS or ERMS by giving rise to vastly heterogenous sarcoma histology. This suggests that implementation of identical molecular changes in two different cell model systems lead to different tumor morphologies, which demonstrates that cell of origin is important for rhabdomyosarcoma histology
Summary
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and adolescents, with an incidence of 0.44/100,000 cases per year [1], while it is exceedingly rare in adults [2]. It has a predilection for the head and neck region [3] and is characterized by expression of myogenic markers despite failure of complete skeletal muscle differentiation [4]. This review focuses on genetic abnormalities, known signaling pathways affected in FN-RMS, and highlights current existing model systems used to study RMS biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.